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Abstract We consider some restricted games which are generalization of the games with
graph-communication structure. We propose a result of in-essential coalitions structure of
some intersecting convex games. Also we show a relationship between link-convexity and
d-revised link-convexity for games on some intersecting family.
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1 Introduction

In this paper we assume that only a certain family of groups have a sufficient internal structure
to operate as a coalition. Such a group of players are denoted as a feasible coalition. Myerson
[9] considered cooperation under explicit communication restrictions imposed by communication
network among the players.

For the class of game with communication structure represented by an undirected graph, a
solution called the average tree solution has been studied recently. For example Herings et al.
[6] proposed the condition of link-convexity under which the average tree solution belongs to
the core for the class of arbitrary undirected graph games. On the other hand, Igarashi and
Yamamoto [7] revised definition of link-convexity to guarantee that the average tree solution is
an element of the core for the class of arbitrary undirected graph games. Also they [8] showed
that link-convexity of [6] coincides with d-revised link-convexity for the class of cycle-complete
graph games.

On the contrary, feasible coalition can not always be represented by an undirected graph. As
a natural result, more general models for the games with graph-communication structure have
been studied. We also consider some restricted games which are generalization of the graph-
communication structure. In section 3 we introduce quasi-intersecting convexity and propose a
result of in-essential coalitins structure. In section 4 and 5 we study a generalization of Igarashi
and Yamamoto [7] results on convexity and d-revised link-convexity of games with cycle-complete
graph-communication structure.

2 Definitions and preliminaries

Let N = {1,2,...,n} be a set of players. A coalition is a nonempty subset of N and a
characteristic function v : 2V — R assigns to each coalition S its value v(S). We denote
(N,v) an n-person game in characteristic function form where v is a real-valued function on
2V and v(§) = 0. In addition, we may call v game on N. A transferable utility cooperative
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game with communication structure is represented by (N,v,L). The edge set L is a set of
communication links L = {{i,j}|i # j, 4,7 € N}, i.e., {i,j} € L if and only if there exists
communication between i and j. The undirected graph G = (IV, L) consists of the vertex set NV
and the edge set L is called communication graph of the game (N, v, L).

A graph G' is called a subgraph of G if V(G') C V(G) and E(G') C E(G). For a vertex
subset S C V(G), the subgraph G[S] of G whose vertex set is S and whose edge set consists of
the edges of G joining vertices of S is called the subgraph of G induced by S.

A path in G = (N, L) is a sequence P = (i1, ,i,,) of different vertices i, (k = 1,---,m)
such that {ig,ix41} € L (k=1,...,m—1). The vertices i; and iy, are linked by P. The number
of edges of a path is its length. A nonempty graph G[S] is called connected if any two of its
vertices are linked by a path. A graph is called complete if any two of its nodes are connected

by an edge. A sequence of vertices (i1, -+ ,ipy,41) is called a cycle if (i1, -+ ,iy,) is a path whose
length is at least 3 and {é,,,41} € L. A graph G = (N, L) is said to be cycle-complete if there
is a cycle (iy,--- ,ik,%1) in the graph then G[{i1,--- ,ix}] is complete.

In the game (N,v,L) with communication graph G, coalition S is feasible if and only if
G[S] is connected. For any S € 2V, let C*(S) denote the collection of all feasible coalitions
in the graph G[S]. A feasible coalition K is a component of S if and only if K € C*(N) is a
maximal subset of S. The graph restricted game (N, v’) with communication structure (N, v, L)
is defined by

KeCL(s)

where CL(S) is the set of all components of S.

In this paper we consider more general models for the games with graph-communication
structure. A restricted game is a triple (N, v, F), where F is a nonempty collection of subsets
of N called feasible coalitions. We assume N € F without loss of generality. A pair (N, F) is
called a feasible coalition system. For any S € 2V, C7(S) = {K|K C SandK € F}. K is a
component of S if and only if K € F is a maximal subset of S. The collection of all components
of S is denoted by C7(S).

A characteristic function v is superadditive if

v(S) +o(T) <v(SUT)
for all disjoint pair of S,T € 2V . A characteristic function v is convex if
v(S)+v(T) <v(SUT)+v(SNT)

for all S,T € 2.
For any S C N and x € R" define

z(9) = Zml

1€S
where () = 0. The core of a game (N, v) is defined by
Core(v) ={x |z € R",z(N) =v(N),¥S C N: z(S) > v(5)}.
The core of a restricted game (N, v, F) is defined by

Core(N,v,F) ={z |z € R",z(N) =v(N),VS € F: z(S) > v(S5)}.



3 Quasi-intersecting convex games

A family F of subsets of N is called an intersecting family if for each intersecting pair of S,T" € F
(i.e., SNT # 0) we have SUT € F and SNT € F. A set-function v : F — R is called an
intersecting-supermodular function on the intersecting family F if

v(S) +o(T) <v(SUT)+v(SNT)

holds for each intersecting pair of S,T" € F. If F is an intersecting family and v is an intersecting-
supermodular function on the intersecting family F we call (N,v,F) an intersecting convex
game.

A collection IT = {Ay,..., Ay} C F is called an F-partition of A if A = A; U---U Ay where
Ay, ..., A € F are pairwise nonempty disjoint feasible coalitions. We denote by Pxr(A) the
family of all F-partition of A. An F-subpartition II of a set A is a set of nonempty disjoint
subsets of A consisting of feasible coalitions. We refer to an element A; of an F-partition II as
a block of TI. The collection of all F-subpartitions of N is denoted by SPz(N).

For a set function ¢g : 7 — R and an F-subpartition II € SP£r(N), we define

Xell

If F is an intersecting family, then we define a partial order = on SPx(N) by defining IT; > Il
if and only if each block of IIy is contained in some block of II;. The least (greatest) element of
SPr(N) above (below) II; and Il in the partially ordered set SPz(N) is denoted by IT; V Il
(IT; AIlz). We should notice that II; ATly does not always exist for two arbitrary F-subpartitions
1y, IIo. However, by defining {}} < II € SPx(N) and {0} < {0}, SPx(N) U {{0}} forms a
lattice with <.

Definition 3.1: Let Fp consist of all those subsets A C N which can be written as

A= J 4,

A€l

where IT € Pr(A). O
Using the similar argument as in the proof of Theorem3.3 [10], we have the following theorem.

Theorem 3.2 (cf. [10]): Let A,B € Fp such that B C A. Let II; € Pr(A) and Il €

Pr(B). For an intersecting-supermodular function v : F — R, if v(II;) = ma>(<A) o(I1) and
HGP]:

v(Il2) = max o(I), then v(II; VIIs) = max o(II) and 7(I1; ATly) = max o(II). O
HGP]:(B) HGP]:(A) HGP]:(B)

Theorem 3.2 is a generalization of the following Narayanan’s Theorem.

Theorem 3.3 ([11] Theorem 3.5): Let I1;,IIy € Py, where Py is_the colleciz'on of all partitions
of N. For any supermodular function f on 2 with f(0) = 0, if f(II;) = f(I;) = Jnax (1),
€PN

then f(Il; VIIz) = f(II; Allp) = fnax F(I). O

Corollary 3.4: Let A, B € Fp such that B C A and v be an intersecting-supermodular function.
(1) For any I1; € arg maxo(Il) there exists Iy € arg maxo(II) with 11y < II;.

IIePx(A) e Pr(B)
(2) For any I € arg maxv(II) there exists [T} € arg max v(I1) with I, < TI}. O
e Pr(B) IePr(A)



Igarashi and Yamamoto [7] introduced the concept of convexity of graph game (N, v, L).

Definition 3.5: (N, v, L) is convex if

v(S) +o(T) <v(SUT)+v(SNT)
for all S, T € CV(N) satisfying SUT € CY(N) and SNT € CF(N) U {0}. O
In conjunction with Definition 3.5, we introduce special class of intersecting convex game.
Definition 3.6: (N,v,F) is quasi-intersecting convez if F is an intersecting family and

v(S) +o(T) <v(SUT)+v(SNT)
for all S,T € F satisfying SUT € F. O

In a convex game (N, v) a coalition S is called inessencial if it has a proper partition IT =
{S1,..., 5t} € Pr(S) — {{S}} such that v(S) = v(II). Coalitions which are not inessential are
called essential. For an intersecting convex game (N, v, F) we denote by £ the collection of its
nonempty essential coalitions. The collection £x gives a description of the core as follows:

Core(N,v,F) ={z |z € R",z(N) =v(N),¥S € Er: z(S) > v(9)}.

A partition IT of S is called an Ex-partition of S if each block of IT is nonempty essential coallition.
We note that if v is superadditive and coalition S is inessential, then v(S) = Y 5y v(S;) for
some Er-partition II of S.

Theorem 3.7: Let (N,v,F) be a quasi-intersecting convex game. If S is an inessential coali-
tion, then there exists a unique Ex-partition II* of S such that v(S) = v(IT*).

Proof: The proof is by contradiction. Suppose there exist two different £r-partition Iy, Il €
Pr(S) — {{S}} such that
v(S) =9(Il;) = v(1ly).

Using properties of the quasi-intersecting convexity of v, we have

(1) = o(Ilp) = max (I1).

[
e Pr(S)—{{S}}
Hence, to apply Theorem 3.2 we obtain
U(S) = E(Hl A Hz)

However, since II; A Ily < IIy, if II1 A IIs = Iy, then at least one block of Ils is inessential. On
the other hand, if II; A Il < II;, then at least one block of II; is inessential. O



4 Convexity of F-restricted games

A partition system is a feasible coalition system (N, F) such that for all § € 2%, éf(S) is an
F-partition of S. If (N, F) is a partition system then Fp U {0} = 2%,

Definition 4.1: Let (V,v,F) be a restiricted game and (N,F) a partition system. The F-
restricted game (N, v”) is defined by

where v7 : 2V — R. O
ALGABA, BILBAO and LOPEZ [1] proved the following theorem.

Theorem 4.2 ([1] Theorem 3): A feasible coalition system (N,F) is a partition system if and
only if F satisfies the following three conditions:

(PL)beF

(P2) {i} € F forallie N

(P3) SUT € F for all intersecting pair of S,T € F. a

For a set function v : F — R, the set function v : Fp U {0} — R is defined by

3(4) = { uhity " (A e )
0 (4 =0).

If af(S) is a partition of S and v is superadditive, then

KeCF(5)
Fujishige [4] and Faigle [3] proved the following lemma.
Lemma 4.3 ([4] Lemma 5.10 [3] Lemma 11): Let (N, v, F) be an intersecting convex game. Then
0(S) +v(T) <v(SUT)+v(SNT)
for all S,T € Fp U {0}. O

Theorem 4.4: Let F be an intersecting family that satisfies conditions (P1) and (P2) of Theo-
rem 4.2. (N,v,F) is a quasi-intersecting convex game if and only if the restricted game (N,v”)
1S convetr.

Proof: First we suppose that (N, v”) is convex. For all intersecting pair of S,T € F, we have
v(S) +v(T) =07 (S) + v (T) <" (SUT) +vF (SNT)=v(SUT) +v(SNT)

because SUT € F and SNT € F. On the other hand, for all S,T € F satisfying SNT = ()
and SUT € F, we obtain

v(S) +v(T) = v7 (S) + v (T) <vF (SUT) =v(SUT).



Hence, (N, v, F) is a quasi-intersecting convex game.
Next we suppose that (N, v,F) is a quasi-intersecting convex game. From (4.1) we have

F(S) = Y w(K) =5(S)
KeCF(S)

for all S € F. Since (N,v,F) is also an intersecting convex game, Lemma 4.3 implies that
(N,v”) is convex. O

Igarashi and Yamamoto [7] showed that convexity of (N, v, L) is a necessary and sufficient
condition for convexity of (N,v*) when the underlying graph is cycle-complete ([7] Theorem
4.7). They also show that if G = (N, L) is a cycle-complete graph, then for all S,7 € C(N)
with S NT # 0 satisfy SNT,SUT € C*(N). Thus, Theorem 4.4 implies that if G is a cycle-
complete graph, then (N,v, L) is a convex game if and only if the graph restricted game (N, v")
is convex.

5 D-revised link-convexity on some union stable and intersect-
ing family

A family F of subsets of N is called a union stable family if for for all intersecting pair of

S,T € F we have SUT € F. A feasible coalition system (N, F) is called a union stable system

if F is a union stable family. For example, C*(N) of a graph game (N, v, L) is a union stable
family. Also a particular case of union stable family is intersecting family.

Definition 5.1: (N, v,F) is link-convez if F is a union stable family and
v(S) +u(T) <v(SUT)+ Y v(K)
KeCF(SNT)

for all S,T € F that satisfy
(LCH)S\T, T\ S,(S\T)u(T\S)eF
(LC2)N\S € For N\T € F. O

Note that if F is a union stable family and S,T € F satisfy (LC1) then SUT € F even if
SNT =0.

Theorem 5.2: Let F be an intersecting family that satisfies conditions (P1) and (P2) of The-
orem 4.2. If (N,v,F) is a quasi-intersecting convex game, then (N,v,F) is link-convex.

Proof: If 5,7 € F then C"(SNT) = {SNT}, hence 3 1 r K)=v(SNT). O

SAT) v(
Theorem 5.2 is a generalization of Igarashi and Yamamoto [7] Theorem 4.8.
Definition 5.3: (N, v,F) is revised link-convez if F is a union stable family and
v(S) +o(T) <v(SUT)+ Y v(K)
KeCF(SNT)

for all S,T € F that satisfy
(RL1)S\T,SUT € F
(RL2)N\ S € F or N\T € F. O



If (N,v”) is a convex game, then (IV,v, F) is revised link-convex because v (SUT) = v(SUT)
and v7 (SNT) = ZKeaf(SnT) v(K).

Definition 5.4: (N, v,F) is d-revised link-convex if F is a union stable family and

v(S)+u(T) <v(SUT)+ > w(K)

KeCF(SNT)
for all S,T € F that satisfy
(dRL1)S\T,SUT € F
(ARL2)N \ S € F
(dRL3)there exists j € T \ S such that (S\T)U{j} € F. O

Definition 5.5: A family F is called link-union stable if F is union stable and for all nonempty
disjoint pair of S,T € F with SUT € F, there exists j € T such that SU{j} € F. O

CY(N) of a graph game (N, v, L) is also a link-union stable family.

Theorem 5.6: Let F be a link-union stable family and an intersecting family. Then (N, v, F)
is link-convex if and only if (N,v,F) is d-revised link-convez.

Proof: Suppose S,T € F satisfy the conditions (dRL1), (dRL2), and (dRL3). We will show
that the pair S, T also satisfy the conditions (LC1) and (LC2). Obviously S, T satisfy (LC2)
because (dRL2) implies N \ S € F. Hence, we only show that S, T satisfy the conditin (LC1).

If SNT = (), then S\T'=S € Fand T\S =T € FOFrom (dRL1) we obtain (S\T)U(T\S) =
SUT € FO Therefore S, T satisfy (LCL).

If SNT # 0, then TN (N\S) # 0 because T'\ S # () by (dRL3). Since F is an intersecting
family, T € F and (dRL2) imply T\ S =TN(N\S) € F. Also S\ T € F by (dRL1). From
(dRL3) we obtain (S\T)U (T'\ S) = ((S\T)U{j}) U (T\ S) € FO Hence S, T satisfy (LC1).

Conversly, suppose S, T € F satisfy the conditions (LC1) and (LC2). We will show that the
pair S, T also satisfy the conditions (dRL1), (dRL2), and (dRL3). Without loss of generality we
assume N \ S € F. Then S,T satisfy (dRL1) by (LC1) and (dRL2) by (LC2). Moreover, since
F is link-union stable family, S, T satisfy (dRL3) by (LC1). O

A particular case of a link-union stable family and an intersecting family is C*(NN) of a cycle-
complete graph game. Hence, for cycle-complete graph game (N, v, L) is link-convex if and only
if (N,v, L) is d-revised link-convex (Igarashi and Yamamoto [8]).

Definition 5.7: (N, v,F) is superadditive if F is a union stable family and
v(S) +o(T) <v(SUT)
for all disjoint pair of S,T € F that satisfy SUT € F. O

Definition 5.8: A family F is called unique link-union stable if F is union stable and for all
nonempty disjoint pair of S,T € F with SUT € F, there exists only one element j € T such
that SU{j} € F. O

Example 5.9: Let N = {1,2,3,4} be a set of players. Then the following family
F=A{0,{1},{2}, {3}, {4},{1,2},{2,3,4},{1,2,3,4}}

s a unique link-union stable. O



Theorem 5.10: Let F be a unique link-union stable family and an intersecting family. Then
(N, v, F) is link-convez if for every S € F it holds that

v(S) +o(T) <v(SUT)
for all T € af(N \ S) satisfying SUT € F.

Proof: Let S,T € F satisfy the conditions (LC1) and (LC2). We suppose N \ T € F without
loss of generality.

We first show that SNT = (). Assume the contrary, letting SNT # (). Then SNT € F
because F is an intersecting family[ Since S\ T, S € F and F is a unique link-union stable
family, there exists j; € S N7 such that

(S\T)u{n}eF.

Moreover, by (LC1) and F’s link-union stability, there exists jo € T\ S such that
(S\T)U {ja} € F.

However, there exists only one element j € T such that
(S\T)U{j} eF

because SUT € F and F is unique link-union stable. This contradicts the fact that j; # j2 and
jlajZ eT. N

Next we show that T € C¥ (N \ S). From SNT =) we have S C N\ 7,7 C N \ SO From
the conditions (LC1) and (LC2) we obtain SUT,N \ T € FO Since S,7,SUT € F and F is a
unique link-union stable family, there exists j3 € S such that

TU{jg} e F.

Suppose T ¢ C7 (N \ S). Then there exists 7" such that T c 7' € CF (N \ S). Thus 7"\ T =
T'N(N\T) € F because F is an intersecting family. Since T, 7"\ T,T' € F and F is unique
link-union stable, there exists j4 € 7"\ T such that

TU{js} € F.
However, since T, N \ T, N € F, there exists only one element j € N \ T such that

TU{j} eF.
This contradicts the fact that j3 # j4 and js,js € N\ T. O
Corollary 5.11: Let F be a unique link-union stable family and an intersecting family. Then
(N,v,F) is d-revised link-convez if (N,v,F) is superadditive. O

CL(N) of a cycle-free graph game (NN, v, L) is also a unique link-union stable family. Hence,
from Theorem 5.10 we obtain the following corollary.

Corollary 5.12 (Herings et al. [6] Corollary 2): A game with cycle-free communication struc-
ture (N,v, L) is link-convez if (N,v, L) is superadditive. O
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